skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Feng, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-quality and brilliant structural colors have been successfully produced using solution-based process over the past decade. 
    more » « less
  2. Abstract Iridescent color-shift pigments have been used in some industrial applications, e.g., for cosmetics and packaging. To achieve environmental-friendly and lasting color, thin-film interference is used to generate structural color. By maximizing the refractive index (RI) difference between the thin films (i.e., using an ultralow RI film), super-iridescent structural color can be produced. While the lowest refractive index of a naturally occurring solid dielectric is close to 1.37 (i.e., MgF2), we synthesized highly porous dielectric SiO2aerogel to achieve ultralow-RI (n ~ 1.06) and demonstrated a high-refractive index/low-refractive index/absorber (HLA) trilayer structural color. The achieved structural color is highly iridescent and capable of tracing a near-closed loop in CIE color space. By tuning the refractive index, thickness, and geometry of the aerogel layer, we control the reflection dip’s shape, therefore producing a wide range of vivid and iridescent colors. 
    more » « less
  3. Abstract To understand diurnal variations in PM2.5composition and aerosol extract absorption, PM2.5samples were collected at intervals of 2 hr from 8:00 to 20:00 and 6 hr from 20:00 to 8:00 (the next day) in northern Nanjing, China, during the winter and summer of 2019–2020 and analyzed for bulk components, organic tracers, and light absorption of water and methanol extracts—a proxy measure of brown carbon (BrC). Diurnal patterns of measured species reflected the influences of primary emissions and atmospheric processes. Light absorption coefficients of water (Abs365,w) and methanol extracts (Abs365,m) at 365 nm shared a similar diurnal profile peaking at 18:00–20:00, generally following changes in biomass burning tracers. However, Abs365,w, Abs365,m, and their normalizations to organic aerosols increased at 14:00–16:00, earlier than that of levoglucosan in the late afternoon, which was attributed to secondarily formed BrC. The methanol extracts showed a less drastic decrease in light absorption at night than the water extracts and elevated absorption efficiency during 2:00–8:00. This is due to the fact that the water‐insoluble OC has a longer lifetime and stronger light absorption than the water‐soluble OC. According to the source apportionment results solved by positive matrix factorization (PMF), biomass burning and secondary formation were the major BrC sources in northern Nanjing, with an average total relative contribution of about 90%. Compared to previous studies, diurnal source cycles were added to the PMF simulations in this work by using time‐resolved speciation data, which avoided misclassification of BrC sources. 
    more » « less
  4. Context.Traditionally, supersonic turbulence is considered to be one of the most likely mechanisms slowing the gravitational collapse in dense clumps, thereby enabling the formation of massive stars. However, several recent studies have raised differing points of view based on observations carried out with sufficiently high spatial and spectral resolution. These studies call for a re-evaluation of the role turbulence plays in massive star-forming regions. Aims.Our aim is to study the gas properties, especially the turbulence, in a sample of massive star-forming regions with sufficient spatial and spectral resolution, which can both resolve the core fragmentation and the thermal line width. Methods.We observed NH3metastable lines with the Very Large Array (VLA) to assess the intrinsic turbulence. Results.Analysis of the turbulence distribution histogram for 32 identified NH3cores reveals the presence of three distinct components. Furthermore, our results suggest that (1) sub- and transonic turbulence is a prevalent (21 of 32) feature of massive star-forming regions and those cold regions are at early evolutionary stage. This investigation indicates that turbulence alone is insufficient to provide the necessary internal pressure required for massive star formation, necessitating further exploration of alternative candidates; and (2) studies of seven multi-core systems indicate that the cores within each system mainly share similar gas properties and masses. However, two of the systems are characterized by the presence of exceptionally cold and dense cores that are situated at the spatial center of each system. Our findings support the hub-filament model as an explanation for this observed distribution. 
    more » « less
  5. Abstract. The methanol extraction method was widely applied to isolate organic carbon(OC) from ambient aerosols, followed by measurements of brown carbon (BrC)absorption. However, undissolved OC fractions will lead to underestimatedBrC absorption. In this work, water, methanol (MeOH), MeOH / dichloromethane(MeOH / DCM, 1:1, v/v), MeOH / DCM (1:2, v/v), tetrahydrofuran (THF), andN,N-dimethylformamide (DMF) were tested for extraction efficiencies ofambient OC, and the light absorption of individual solvent extracts wasdetermined. Among the five solvents and solvent mixtures, DMF dissolved thehighest fractions of ambient OC (up to ∼95 %), followed byMeOH and MeOH / DCM mixtures (<90 %), and the DMF extracts hadsignificantly (p<0.05) higher light absorption than other solventextracts. This is because the OC fractions evaporating at highertemperatures (>280∘) are less soluble in MeOH(∼80 %) than in DMF (∼90 %) and containstronger light-absorbing chromophores. Moreover, the light absorption of DMFand MeOH extracts of collocated aerosol samples in Nanjing showed consistenttemporal variations in winter when biomass burning dominated BrC absorption, while the average light absorption of DMF extracts was more than 2 timesgreater than the MeOH extracts in late spring and summer. The average lightabsorption coefficient at 365 nm of DMF extracts was 30.7 % higher (p<0.01) than that of MeOH extracts. Source apportionment resultsindicated that the MeOH solubility of BrC associated with biomass burning,lubricating oil combustion, and coal combustion is similar to their DMFsolubility. The BrC linked with unburned fossil fuels and polymerizationprocesses of aerosol organics was less soluble in MeOH than in DMF, whichwas likely the main reason for the large difference in time series betweenMeOH and DMF extract absorption. These results highlight the importance oftesting different solvents to investigate the structures and lightabsorption of BrC, particularly for the low-volatility fraction potentiallyoriginating from non-combustion sources. 
    more » « less